
Post-Modern Software Development

Software development is an art. The most noteworthy computer science monograph of
the 2 0 ~ century was, after all, KIUWS “The ~ r t of Computer Programming”
~ ~ : / / ~ ~ ~ . ~ e r i c a n ~ c i e n t i S f . 0 r ~ t e m u l a t e / B o o k R e v i e w T v ~ D e ~ ~ ~ s e t i ~ Z 6 5 75;_isessi
onid=aaa6UkBHDVJBav [l]. One of the starting points for this column is Knuth‘s
Turing award, a discussion of art in computer science [2].

Art is a word with many meanings. It originally referred to skill of joining or fitting.
(Much [too much for we traditionalists] of software creation these days is the art of
connecting existing pieces.) The meaning of “art” expanded to the system of principles
and rules for attaining a desired end. Art stands in contrast to science, engineering,
manufhcturing, and fashion. Science distills knowledge into principles and laws; art
recognizes that there are human choices in activities. Combine art with an attention to
economy and one gets engineering, like the computer science holy grail of “software
engineering.” Do something following a well-defined and low-skill plan and one gets
rnanufhcturing. Choosing among equivalent possibilities is fashion. Designing a
computer is an art. Designing one that people will buy is engineering. Building one from
that design is manufacturing. Picking the color for the computer case is fashion. (Art is
also a synonym for necromancy, a topic of clear relevance to computer science.)

Art also refers to the use of skill to create that which is esthetically or intellectually
pleasing. Fine arts show an intellectual progression through the ages, shaped by new
technology (e.g., casting, cameras, computers), shifting economic forces (the decline of
the church, the rise of the merchant class, ultimately the emergence of mass media with
the entire population as customers for art), new understandings (e.g., perspective, the
physics of light and sound) and evolving response to the ideas of the previous generation
(e-g., baroque, realistic, impressionist, ”modem” art). In fine arts, prior themes are
revisited with new twists. Science and engineering show an unconditional progression;
nothing will make us return to Newtonian mechanics, view of non-Euclidean geometry as
heresy, or replace integrated circuits with discrete transistors. Disciplines like education
and organizational management follow fashio-ld ‘truths” reemerge. “The
Management Style of Attila the Hun” and “The Management Style of Saint Francis of
Assisi” are equally likely to be business best sellers at some arbitrary point in the future.

The art of software development

The aesthetic metric in science is accuracy and simplicity. Art encompasses aesthetic
metrics such as beauty, intellectual progression and quality of workmanship. Engineering
includes reliability and economy of construction. We expect our software systems to
satisfy a large raage of ilities, including an aesthetic of understandability; ease of
construction, maintenance and evolvability; an economy of execution; reliability; security
from attack interoperability; and so forth. Software has a special place in the range of
artifacts, as it intimately connects the mathematical, physical and psychological realms.
Psychology plays a dual role in software systems, both in software creation and use.

Tt. hisiory or“ sofixare deveiopmenr has shown aspects of art, science, engmeemg and
fashion (but very little manufhcturing). Such intellectual developments show eras: the
baroque gives way to the rococo, romanticism, modem art, post modem art, and so forth.
In software, the early emphasis on functional development yielded to structured
programming, and, over the last twenty years, the rise of computer science’s modernism,
object-oriented technology. Along the way we’ve seen offshoots like functional, logic
and rule-based systems. Artistic development has been characterized by first, improved
ability for rendering concrete realism and later attempts to express more in a work of art
than the literal interpretation of its content40 express richer relationships and to tie the
work of art into the context of its developer and environment.

One can see a similar progression in software development. Earliest programming
languages were concerned with efficient realism: it was hard to render even highly
structured problems into code; efficient use of machine resources was a dominant design
criterion. Programming was linear: things said in the program tended to correspond, one
to one, to things that happened when the program executed. Programming was planar:
One could easily trace the potential execution paths in the program and identify which
conditions would give rise to which code being called. As soha re systems became more
plastic and complex, new technologies came to dominate. Today we have objects.
Programmers are instructed to think of the elements of their domain and of their
implementation as “things” with “state” and ‘khavior,” and to code that state and
behavior. Linearity and planarity decreased. Inheritance allows statements asserted in
distant ancestors to intrude in program execution; dynamic object binding draws bridges
over the program d a c e .

Post-Modern Programming

In all domains, old ideas give way or evolve to new ones. W%at is the post-modem
programming equivalent? That is, what comes after object-orientation? Broadly, object
orientation suffers from several limitations:

All meaning is wrapped up in the code. There are few ways to say anything about
the system that aren’t about how the system executes. Comments, UML diagrams,
and similar documents are, of course, an exception to this. I’m not suggesting
skipping comments in code, but such elements are notoriously imeliable and non-
automatable. One the other hand, type systems represent a fkst step toward
annotation. By declaring something to be a type, the programmer conveys more
than just implementation. Additionally, tools have evolved to help process the
type information. In the future, we are likely to see richer uses of annotation in
programming, with annotations tied not only to program execution but also to
program analysis and understanding. Such annotations may range fkom simple
propositional elements to describing invariants that the system ought to maintain,
and ought to include constraints about how program elements can be composed
and extended.

something--the code of an object includes its data, behavior and interfaces.
Unfortunately, the real world isn’t that simple. Many things we care about with

The great wisdom of objects was to bring together all everything about

respect to d e are not neaxiy iocaiized into a singie piace in an object-oriented
decomposition. Current technologies force scattering of these concerns
throughout a system. Future programming environments may provide
mechanisms for expressing and enforcing crosscutting concerns and the ability to
make quantzjied statements about the overall behavior of systems, having those
assertions enforced throughout the system.

Things aren’t really that simple as to just be atomic. The real world (and real data
structures) are composites of collections of elements (e.g., the wheels are part of a
car, objects in themselves but also having a special relationship with the car and
each other), collections, and masses. The opposite side of this coin is that models
of elements in the real world and partial computations on these elements have a
conceptual existence beyond a single execution of a program. Post-modem
programming will need ways to provide such persistence.

Software doesn’t work. My browser crashes periodically. Even the Mars Rovers,
with their inherent difficulty of on-sight repairs, have software bugs. I won’t
begin to get into my experiences with a popular desktop operating system. Post-
modem soha re systems may come to recognize that such failures are the norm,
not the exception and will be built to deal with unexpected failures rather than be
surprised by them.

Classical programming is like call and rcsponse music. One asks a question (makes
a subprogram call) and gets a response. Post-modern software may explore other
options, including event-based systems, conversational communication, and
context-sensitive evaluations.

such as the choice of keywords for particular operations. Modem programming
language analysis rushes to dispense with syntactic sugar to get to operational,
semantic meat. A post-modem world may find a different balance between
universal, common ways of expressing programs and notations that are specific to
particular domains or eccentric for particular programmers. Matching such
domain-speczjic syntax will be domain-specific semantics-software languages
with inherent facilities for particular problem domains.

Early analysts of programming languages put a lot of stock in language syntax,

Post-object Languages

New movements in the art of software are often heralded by new programming languages
(for example, “object-oriented languages”). When d e linguistic idea takes hold, the
support structure for that language emerges (for example, “object-oriented software
analysis and design”). In a future column, I plan to examine some of the language and
environment trends that are trying to ovefcome object limitations.

And speaking of promises, last January I promised to report on how the Mars Exploration
Rover/Collaborative Information Portal system worked out. I’ve postponed that reporting
because, well, the damn things are still working, even though they’re out of warranty.
This issue includes a paper (not by me) with a more complete description of that system
and its use, which I figure is dispensation from that prior promise.

1 . Donald E. Knuth, The Art of Compter Programming, Reading-Massachusetts:
Addison- Wesley, 1 968-2Oxx.

2. Donald E. Knuth, “Computer programming as an art,” Communications of the ACM,
I 7 , 12 (December 1974) pp 667 - 673.

